On (2, 4) complete intersection threefolds that contain an Enriques surface

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Codimension Fano–enriques Threefolds

Introduction In the 1970s, Reid introduced the graded rings method for the explicit classification of surfaces, which he used to produce a list of 95 K3 quasi-smooth hypersurfaces in weighted projective spaces (which were proved to be the only ones). Later, Fletcher used this method to create more lists of different weighted complete intersections. From the K3 surfaces he developed two lists of...

متن کامل

Acm Vector Bundles on Prime Fano Threefolds and Complete Intersection Calabi Yau Threefolds

In this paper we derive a list of all the possible indecomposable normalized rank–two vector bundles without intermediate cohomology on the prime Fano threefolds and on the complete intersection Calabi-Yau threefolds, say V , of Picard number ρ = 1. For any such bundle E, if it exists, we find the projective invariants of the curves C ⊂ V which are the zero–locus of general global sections of E...

متن کامل

Rigid curves in complete intersection Calabi-Yau threefolds

Working over the complex numbers, we study curves lying in a complete intersection K3 surface contained in a (nodal) complete intersection Calabi-Yau threefold. Under certain generality assumptions, we show that the linear system of curves in the surface is a connected componend of the the Hilbert scheme of the threefold. In the case of genus one, we deduce the existence of infinitesimally rigi...

متن کامل

O ct 2 00 4 COMPLETE INTERSECTION LATTICE

In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of ZZn ⊕ T with no invertible elements, where T is a finite abelian group. We also characterize the lattice ideals that are set-theoretic complete intersections on binomials.

متن کامل

On the Genus-One Gromov-Witten Invariants of Complete Intersection Threefolds

We express the genus-one degree-d GW-invariant of a projective complete intersection threefold in terms of the genus-zero degree-d GW-invariant and the integral of a natural class on the main component of the moduli space of genus-one degree-d stable maps into the corresponding projective space P. This integral is computable via the classical localization theorem. The method described in this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2016

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-016-1676-z